
chrono Documentation
Release 1.0.1

Daniel Lindsley

October 30, 2013

CONTENTS

i

ii

chrono Documentation, Release 1.0.1

A (BSD licensed) context manager for timing execution. Useful for benchmarking everyday Python code eas-
ily/cleanly.

CONTENTS 1

chrono Documentation, Release 1.0.1

2 CONTENTS

CHAPTER

ONE

INSTALLATION

$ pip install chrono

3

chrono Documentation, Release 1.0.1

4 Chapter 1. Installation

CHAPTER

TWO

CONTENTS

2.1 chrono Tutorial

chrono is a pretty small & simple library. It leverages the context manager support added in Python 2.6+ (backported
to Python 2.5 via __future__). It also works on Python 3.3+ (all examples below are written using Py3).

It provides a simple context manager that you wrap around the code you want to time.

2.1.1 Getting Started

For example, let’s say you want to time your awesome Fibonacci function & you want to make sure it’s efficient. Your
code might look something like...:

def fib(n):
if n in (0, 1):

return n
else:

return fib(n - 1) + fib(n - 2)

To time it using chrono, you’d call it in the following way...:

from chrono import Timer

with Timer() as timed:
print(fib(10))

print("Seconds taken: {0}".format(timed.elapsed))

If everything’s setup right, you should get something like the following as output:

55
Seconds taken: 0.000102996826172

Unfortunately, unless you pass a very large number to fib, the time taken is going to be very low & you’re not going
to get a good sample. If only we could run that function with small values but do it a bunch of times...

2.1.2 Looping

This is where the context manager approach shines. Rather than having to write a wrapper function or similar (like
you have to do with the timeit module), you simply need to alter your benchmarking code to use a loop...:

5

http://docs.python.org/3/library/stdtypes.html?highlight=contextmanager#context-manager-types

chrono Documentation, Release 1.0.1

from chrono import Timer

with Timer() as timed:
for i in range(100):

print(fib(10))

print("Seconds taken: {0}".format(timed.elapsed))

Now I get this as output:

Lots of "55"s, then...
Seconds taken: 0.0073549747467

Much better. Now things like CPU context switches & kernel scheduling will have less of an impact on our benchmark.
It’s still not perfect (things like averages would help some), but it’s an improvement & it was easy.

2.1.3 Timer

When invoked with the with Timer() as ...: statement, you get back the Timer instance. It’s a simple
object with a couple of useful properties.

‘‘ elapsed‘‘ After the context manager is complete, the time differential is calculated & stored for later reference.
This is a floating point number in seconds.

start The time (in a floating point Unix timestamp) of when the context manager started.

end The time (in a floating point Unix timestamp) of when the context manager completed.

2.2 Running Tests

Setup:

$ git clone https://github.com/toastdriven/chrono.git
$ cd chrono
$ virtualenv -p python3 env3
$. env3/bin/activate
$ pip install nose

Running:

$ nosetests -s -v tests.py

chrono is maintained with 100% passing tests at all times.

6 Chapter 2. Contents

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

7

